Novel Statistical Methods on Identifying Subgroups and Predicting Individualized Treatment Effects with Clustered/Longitudinal Data

Zhikuan Quan

Advisor: Shuai Chen

June 13, 2023

- A major challenge in the domain of medical science and healthcare is to evaluate the effect of an intervention or exposure (referred as "treatment") on the outcome.
- Traditional treatment guidelines are based on the average treatment effect (ATE) on the entire population.

Introduction: Personalized Medicine

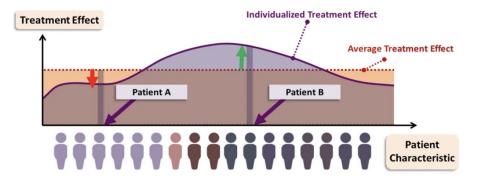


Figure: Transit from ATE to ITE

Zhikuan Quan (UCD)

PhD Qualifying Exam in Biostatistics

▲ 🗗 🕨 🔺 🖹 🕨 🛎 🛓 June 13. 2023

3/51

э

Individualized Treatment Effect (ITE)

- Goal: Novel statistical methods to estimate ITE
- Identify the subgroups that have heterogeneous treatment effects
- Predict the individualized treatment effects for new subjects

• Motivating Example: Maternal Immune Activation (MIA) Study

- MIA during pregnancy alters postnatal brain growth and cognitive development in nonhuman primate offspring. [Vlasova et al., 2021]
- High maternal status for vitamin D, iron, zinc, or choline could promote resilience to the effects of MIA. [Meyer, 2019]

• Motivating Example: Maternal Immune Activation (MIA) Study

- MIA during pregnancy alters postnatal brain growth and cognitive development in nonhuman primate offspring. [Vlasova et al., 2021]
- High maternal status for vitamin D, iron, zinc, or choline could promote resilience to the effects of MIA. [Meyer, 2019]
- MIA causes aberrant outcomes in only a subset of pregnancies.
 - \rightarrow How to predict whether a pregnancy is susceptible to MIA?

• Motivating Example: Maternal Immune Activation (MIA) Study

- MIA during pregnancy alters postnatal brain growth and cognitive development in nonhuman primate offspring. [Vlasova et al., 2021]
- High maternal status for vitamin D, iron, zinc, or choline could promote resilience to the effects of MIA. [Meyer, 2019]
- MIA causes aberrant outcomes in only a subset of pregnancies.
 → How to predict whether a pregnancy is susceptible to MIA?
- Goal: Estimate ITE of MIA (ie, individualized MIA effect)
 - Identify the subgroups that are resilient or susceptible to MIA using baseline information during pregnancy
 - Facilitate the intervention for high-risk mothers during pregnancy and early intervention for high-risk offspring.

- Naive Full Regression Model
 - Need strong assumptions in model specification.

- Naive Full Regression Model
 - Need strong assumptions in model specification.
- Robust methods bypassing the modeling of main effects: General Framework of Subgroup Identification: [Chen et al., 2017]
 - A-Learning: Model the treatment-covariate interaction with pre-estimated propensity score [Murphy et al., 2003]
 - Weighting Approaches: Inverse probability weighted estimator
 - Outcome Weighted Learning [Zhao et al., 2012]
 - D-Learning [Tian et al., 2014]

- Naive Full Regression Model
 - Need strong assumptions in model specification.
- Robust methods bypassing the modeling of main effects: General Framework of Subgroup Identification: [Chen et al., 2017]
 - A-Learning: Model the treatment-covariate interaction with pre-estimated propensity score [Murphy et al., 2003]
 - Weighting Approaches: Inverse probability weighted estimator
 - Outcome Weighted Learning [Zhao et al., 2012]
 - D-Learning [Tian et al., 2014]
- Recent extensions to the robust methods:
 - Residual Weighted Learning: Use residual as outcome to reduce the variance of the estimator [Liu et al., 2018]
 - Doubly Robust Direct Learning: Double robustness with possibly mis-specified main effect and propensity score models [Meng et al., 2022]

- However, most of current robust statistical approaches are only for single-outcome data.
 - Cannot handle clustered/longitudinal outcomes
 - PA-Learning. Model the treatment-covariate interaction with pre-estimated propensity score [Murphy et al., 2003]
 - Weighting Approaches: Inverse probability weighted estimator
 - Outcome Weighted Learning [Zhao et al., 2012]
 - D-Learning [Tian et al., 2014]
- Recent extensions to the robust methods:
 - Residual Weighted Learning: Use residual as outcome to reduce the variance of the estimator [Liu et al., 2018]
 - Doubly Robust Direct Learning: Double robustness with possibly mis-specified main effect and propensity score models [Meng et al., 2022]

New challenges in complicated clustered/longitudinal data:

- The correlation of outcomes is common in health studies.
 - Longitudinal data: e.g. repeated measures of cytokines level over time
 - Clustered data: e.g. multiple offspring within the same dam
 - Multi-leveled data: e.g. repeated outcomes over time for each offspring, and multiple offspring from same dam
- The increasing availability and complexity of observational data
 - High-dimensional Data: e.g. EHR, genetics information
 - Non-linear relationships

Туре	Method	Robust to main effect	Robust to propensity score	Subgroup identification	Estimation of ITE	Comments		
Linear Mixed Model	Two-stage Method [Cho et al., 2017]					 Strong assumption in modeling treatment effect as slope of linear time 		
Generalized Weighting Method	Huling's Method [Huling et al., 2019]	V				 Did not account for the serial correlation Not applicable in clustered data 		
Tree-based Algorithm	Interaction Tree [Wei et al., 2020]					 Need large sample size Only 0 cut-off to identify subgroup 		

June 13, 2023

→ < ∃→

13/51

We propose a novel statistical framework for clustered/longitudinal data, with following advantages:

- Account for the correlation in data
- Directly estimate the ITE in both randomized and observational data
- Identify subgroups with heterogeneous intervention effects
- Doubly robust property with respect to mis-specification of main effect or propensity score
- Allow regularization approach to handle high-dimensional data
- Allow flexible modeling of ITE using flexible function space or machine learning techniques

Methodology

Zhikuan Quan (UCD)

PhD Qualifying Exam in Biostatistics

June 13, 2023

< ∃⇒

15/51

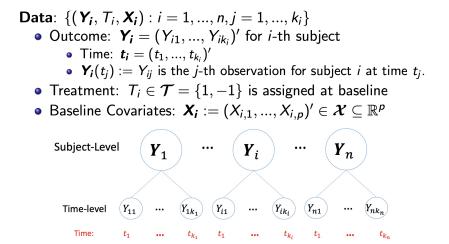


Figure: Longitudinal Data

	· · · · · · · · · · · · · · · · · · ·		1 = 1	1 = 1	 \$) Q (\$
Zhikuan Quan (UCD)	PhD Qualifying Exam in Biostatistics		June 13,	2023	16/51

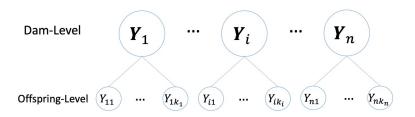


Figure: Clustered Data in MIA Study

э

- Potential Outcome: $\boldsymbol{Y}_{\boldsymbol{i}}^{(\mathcal{T}_{\boldsymbol{i}})}, \mathcal{T}_{\boldsymbol{i}} \in \{1, -1\}$
- Causal Inference Framework
 - Consistency Assumption:

$$\mathbf{Y}_{i} = I\{T_{i} = 1\}\mathbf{Y}_{i}^{(1)} + I\{T_{i} = -1\}\mathbf{Y}_{i}^{(-1)}$$

• Unconfoundedness Assumption:

$$(\boldsymbol{Y}_{\boldsymbol{i}}^{(1)}, \boldsymbol{Y}_{\boldsymbol{i}}^{(-1)}) \perp T_{\boldsymbol{i}} | \boldsymbol{X}_{\boldsymbol{i}}$$

Positivity Assumption:

$$\pi_1(m{X_i}) := P(\, T_i = 1 | m{X_i}) \in (0,1) ext{ and } \pi_{-1}(m{X_i}) = 1 - \pi_1(m{X_i})$$

We can decompose the continuous outcome into:

$$\mathbf{Y}_i = \mathbf{m}(\mathbf{X}_i, \mathbf{t}_i) + T_i \delta(\mathbf{X}_i, \mathbf{t}_i)/2 + \epsilon_i$$
(1)

We can decompose the continuous outcome into:

$$\mathbf{Y}_i = \mathbf{m}(\mathbf{X}_i, \mathbf{t}_i) + T_i \delta(\mathbf{X}_i, \mathbf{t}_i)/2 + \epsilon_i$$
(1)

• Main Effect is characterized by

$$\boldsymbol{m}(\boldsymbol{X}_{i}) := \mathbb{E}\left[(\boldsymbol{Y}_{i}^{(1)} + \boldsymbol{Y}_{i}^{(-1)})|\boldsymbol{X}_{i}\right]/2$$
$$= \{\mathbb{E}(\boldsymbol{Y}_{i}|T_{i} = 1, \boldsymbol{X}_{i}) + \mathbb{E}(\boldsymbol{Y}_{i}|T_{i} = -1, \boldsymbol{X}_{i})\}/2$$
$$\boldsymbol{m}(\boldsymbol{Y}_{i} = 1) = (\boldsymbol{m}(\boldsymbol{Y}_{i} = 1) - \boldsymbol{m}(\boldsymbol{Y}_{i} = 1))'$$

where $m(X_i, t_i) = (m(X_i, t_1), ..., m(X_i, t_{k_i}))'$

We can decompose the continuous outcome into:

$$\mathbf{Y}_i = \mathbf{m}(\mathbf{X}_i, \mathbf{t}_i) + T_i \delta(\mathbf{X}_i, \mathbf{t}_i)/2 + \epsilon_i$$
(1)

Main Effect is characterized by

$$\boldsymbol{m}(\boldsymbol{X}_{i}) := \mathbb{E}\left[(\boldsymbol{Y}_{i}^{(1)} + \boldsymbol{Y}_{i}^{(-1)}) | \boldsymbol{X}_{i}\right] / 2$$
$$= \{\mathbb{E}(\boldsymbol{Y}_{i} | T_{i} = 1, \boldsymbol{X}_{i}) + \mathbb{E}(\boldsymbol{Y}_{i} | T_{i} = -1, \boldsymbol{X}_{i})\} / 2$$

where $m(X_i, t_i) = (m(X_i, t_1), ..., m(X_i, t_{k_i}))'$

• The individualized treatment effect (ITE) is represented by:

$$\delta(oldsymbol{X}_i, oldsymbol{t}_i) := \mathbb{E}\left[(oldsymbol{Y}_i^{(1)} - oldsymbol{Y}_i^{(-1)}) |oldsymbol{X}_i
ight]$$

where $\boldsymbol{\delta}(\boldsymbol{X_i}, \boldsymbol{t_i}) = (\delta(\boldsymbol{X_i}, t_1), ..., \delta(\boldsymbol{X_i}, t_{k_i}))'$

We can decompose the continuous outcome into:

$$\mathbf{Y}_i = \mathbf{m}(\mathbf{X}_i, \mathbf{t}_i) + T_i \delta(\mathbf{X}_i, \mathbf{t}_i)/2 + \epsilon_i$$
(1)

• Main Effect is characterized by

$$m(\boldsymbol{X}_i) := \mathbb{E}\left[(\boldsymbol{Y}_i^{(1)} + \boldsymbol{Y}_i^{(-1)}) | \boldsymbol{X}_i \right] / 2$$

= { $\mathbb{E}(\boldsymbol{Y}_i | T_i = 1, \boldsymbol{X}_i) + \mathbb{E}(\boldsymbol{Y}_i | T_i = -1, \boldsymbol{X}_i)$ }/2

where $m(X_i, t_i) = (m(X_i, t_1), ..., m(X_i, t_{k_i}))'$

• The individualized treatment effect (ITE) is represented by:

$$\delta(\boldsymbol{X}_i, t_i) := \mathbb{E}\left[(\boldsymbol{Y}_i^{(1)} - \boldsymbol{Y}_i^{(-1)}) | \boldsymbol{X}_i
ight]$$

where $\boldsymbol{\delta}(\boldsymbol{X_i}, \boldsymbol{t_i}) = (\delta(\boldsymbol{X_i}, t_1), ..., \delta(\boldsymbol{X_i}, t_{k_i}))'$

• Random Error $\boldsymbol{\epsilon}_{i} = (\epsilon_{i1},...,\epsilon_{ik_i})'$ with $\mathbb{E}(\boldsymbol{\epsilon}_{i}) = \boldsymbol{0}_{k_i}$ and invertible $Var(\boldsymbol{\epsilon}_{i}) = \boldsymbol{V}_{i}$

We can decompose the continuous outcome into:

$$\mathbf{Y}_i = \mathbf{m}(\mathbf{X}_i, \mathbf{t}_i) + T_i \delta(\mathbf{X}_i, \mathbf{t}_i)/2 + \epsilon_i$$
(1)

• Main Effect is characterized by

$$m(\boldsymbol{X}_i) := \mathbb{E}\left[(\boldsymbol{Y}_i^{(1)} + \boldsymbol{Y}_i^{(-1)}) | \boldsymbol{X}_i \right] / 2$$

= { $\mathbb{E}(\boldsymbol{Y}_i | T_i = 1, \boldsymbol{X}_i) + \mathbb{E}(\boldsymbol{Y}_i | T_i = -1, \boldsymbol{X}_i)$ }/2

where $m(X_i, t_i) = (m(X_i, t_1), ..., m(X_i, t_{k_i}))'$

• The individualized treatment effect (ITE) is represented by:

$$\delta(\boldsymbol{X}_i, t_i) := \mathbb{E}\left[(\boldsymbol{Y}_i^{(1)} - \boldsymbol{Y}_i^{(-1)}) | \boldsymbol{X}_i\right]$$

where $\boldsymbol{\delta}(\boldsymbol{X_i}, \boldsymbol{t_i}) = (\delta(\boldsymbol{X_i}, t_1), ..., \delta(\boldsymbol{X_i}, t_{k_i}))'$

• Random Error $\boldsymbol{\epsilon}_{i} = (\epsilon_{i1}, ..., \epsilon_{ik_i})'$ with $\mathbb{E}(\boldsymbol{\epsilon}_{i}) = \boldsymbol{0}_{k_i}$ and invertible $Var(\boldsymbol{\epsilon}_{i}) = \boldsymbol{V}_{i}$

😧 For clustered data, the time t_i can be excluded. (reduced model)

• For single outcome model with $\{(Y_i, T_i, X_i) : i = 1, ..., n\}$:

$$\hat{\delta} := \operatorname*{argmin}_{f \in \{\mathcal{X} \to \mathbb{R}\}} \frac{1}{n} \sum_{i=1}^{n} \frac{M(Y_i, T_i f(\boldsymbol{X}_i)/2)}{\pi_{T_i}(\boldsymbol{X}_i)}$$

where M(.,.) is pre-specified loss function that characterizes the goodness of fit. [Chen et al., 2017]

• e.g. $M(a, b) = (a - b)^2$ for continuous outcome.

• Our new method uses loss function:

$$M(\boldsymbol{a}, \boldsymbol{b}) = (\boldsymbol{a} - \boldsymbol{b})' \boldsymbol{V}^{-1} (\boldsymbol{a} - \boldsymbol{b})$$

• The ITE δ can be estimated by:

$$\hat{\delta} := \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\pi_{T_i}(\boldsymbol{X_i})} \{ \boldsymbol{Y_i} - T_i \boldsymbol{f}(\boldsymbol{X_i}, \boldsymbol{t_i})/2 \}' \boldsymbol{V_i}^{-1} \\ \{ \boldsymbol{Y_i} - T_i \boldsymbol{f}(\boldsymbol{X_i}, \boldsymbol{t_i})/2 \}$$

- For longitudinal data: $f(X_i, t_i) = (f(X_i, t_1), ..., f(X_i, t_{k_i}))'$.
- For clustered data: $f(X_i) = (f(X_i), ..., f(X_i))'$

$$\hat{\delta} := \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\pi_{T_i}(\boldsymbol{X_i})} \{ \boldsymbol{Y_i} - T_i \boldsymbol{f}(\boldsymbol{X_i}, \boldsymbol{t_i})/2 \}' \boldsymbol{V_i}^{-1} \{ \boldsymbol{Y_i} - T_i \boldsymbol{f}(\boldsymbol{X_i}, \boldsymbol{t_i})/2 \}$$

- In longitudinal data, one example is to apply AR(1) or other correlation structure for V_i;
- In clustered data, one example is to use exchangeable correlation structure for V_i;
- 😒 Our method can be also applied to multi-level data.

Theorem 1: Consistency

Under the assumptions in causal inference framework with model (1), for the working model of propensity score $\hat{\pi}_1(\mathbf{x})$, if $\hat{\pi}_1(\mathbf{x}) = \pi_1(\mathbf{x})$ for $\mathbf{x} \in \mathcal{X}$ almost surely, we have

$$\boldsymbol{\delta} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E} \left[\frac{1}{\hat{\pi}_{T_i}(\boldsymbol{X}_i)} \{ \boldsymbol{Y}_i - T_i \boldsymbol{f}(\boldsymbol{X}_i, \boldsymbol{t}_i)/2 \}' \boldsymbol{V}_i^{-1} \{ \boldsymbol{Y}_i - T_i \boldsymbol{f}(\boldsymbol{X}_i, \boldsymbol{t}_i)/2 \} \right]$$

- Even modeling of main effects is by-passed, the $\hat{\delta}$ is consistent if the propensity score is consistent.
 - There are often many covariates in main effects, but far fewer intervention-moderators that alter intervention effects
 - $\bullet~$ We model intervention-moderators only $\rightarrow~$ robust to model mis-specification of main effect

- As in Residual Weighted Learning for single outcome, the variance of $\hat{\delta}$ can be reduced when the outcome is replaced by augmented outcome Y a(X). [Liu et al., 2018]
- Following this idea in our method with augmented outcome
 Y_i a(X_i, t_i), we can prove that the optimal augmentation (with smallest variance) is:

$$\boldsymbol{a}(\boldsymbol{X}_{i},\boldsymbol{t}_{i}) = \boldsymbol{m}(\boldsymbol{X}_{i},\boldsymbol{t}_{i}) + \{1 - 2\pi_{1}(\boldsymbol{X}_{i})\}\boldsymbol{\delta}(\boldsymbol{X}_{i},\boldsymbol{t}_{i})$$

- As in Residual Weighted Learning for single outcome, the variance of $\hat{\delta}$ can be reduced when the outcome is replaced by augmented outcome Y a(X). [Liu et al., 2018]
- Following this idea in our method with augmented outcome
 Y_i a(X_i, t_i), we can prove that the optimal augmentation (with smallest variance) is:

$$\boldsymbol{a}(\boldsymbol{X}_{i},\boldsymbol{t}_{i}) = \boldsymbol{m}(\boldsymbol{X}_{i},\boldsymbol{t}_{i}) + \{1 - 2\pi_{1}(\boldsymbol{X}_{i})\}\boldsymbol{\delta}(\boldsymbol{X}_{i},\boldsymbol{t}_{i})$$

• In randomized trial with $\pi_1(X_i) = 0.5$, the optimal efficiency augmentation is

$$a(X_i, t_i) = m(X_i, t_i)$$

- As in Residual Weighted Learning for single outcome, the variance of $\hat{\delta}$ can be reduced when the outcome is replaced by augmented outcome Y a(X). [Liu et al., 2018]
- Following this idea in our method with augmented outcome
 Y_i a(X_i, t_i), we can prove that the optimal augmentation (with smallest variance) is:

$$\boldsymbol{a}(\boldsymbol{X}_{i},\boldsymbol{t}_{i}) = \boldsymbol{m}(\boldsymbol{X}_{i},\boldsymbol{t}_{i}) + \{1 - 2\pi_{1}(\boldsymbol{X}_{i})\}\boldsymbol{\delta}(\boldsymbol{X}_{i},\boldsymbol{t}_{i})$$

- In observational study with sparse high-dimensional data:
 - We often expect the main effect is much larger than the interaction part (most covariates contributes to main effects *m* but not in δ)
 Thus, the optimal efficiency augmentation is approximated by

$$a(X_i, t_i) \approx m(X_i, t_i)$$

Main effect estimation for efficiency augmentation:

$$\hat{\boldsymbol{m}} := \operatorname*{argmin}_{\boldsymbol{g} \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\pi_{T_i}(\boldsymbol{X}_i, \boldsymbol{t}_i)} \{\boldsymbol{Y}_i - \boldsymbol{g}(\boldsymbol{X}_i, \boldsymbol{t}_i)\}' \boldsymbol{V}_i^{-1} \{\boldsymbol{Y}_i - \boldsymbol{g}(\boldsymbol{X}_i, \boldsymbol{t}_i)\}$$

- It uses all the data units all at once to estimate the main effect.
- It can be easily generalized to other regression methods or flexible models using machine learning techniques.
- If the propensity score is known, the main effect estimator is consistent if *m* ∈ *G*.
- If the propensity score is unknown, one can estimated it by simple logistic regression with all baseline covariates before intervention.
- After obtaining $\hat{\pmb{m}},$ we can plug it in outcome augmentation to estimate δ

Augmented New Method for Correlated Data

- STEP 1: Estimate the propensity score model π_{T_i}(X_i) and main effect model m̂(X_i, t_i) for efficiency augmentation
- STEP 2: Estimate ITE model $\hat{\delta}(X_i, t_i)$ by minimizing the loss function:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\hat{\pi}_{T_i}(\boldsymbol{X}_i)}\left[\{\boldsymbol{Y}_i-\hat{\boldsymbol{m}}(\boldsymbol{X}_i,\boldsymbol{t}_i)\}-T_i\boldsymbol{f}(\boldsymbol{X}_i,\boldsymbol{t}_i)/2\right]'\boldsymbol{V}_i^{-1}\\\left[\{\boldsymbol{Y}_i-\hat{\boldsymbol{m}}(\boldsymbol{X}_i,\boldsymbol{t}_i)\}-T_i\boldsymbol{f}(\boldsymbol{X}_i,\boldsymbol{t}_i)/2\right]$$

Theorem 2: Double Robustness

Under the assumptions in causal inference framework with model (1), for the working model of propensity score $\hat{\pi}_1(\mathbf{x})$ and main effect $\hat{\mathbf{m}}(\mathbf{x}, \mathbf{t})$, if either $\hat{\pi}_1(\mathbf{x}) = \pi_1(\mathbf{x})$ or $\hat{\mathbf{m}}(\mathbf{x}, \mathbf{t}) = \mathbf{m}(\mathbf{x}, \mathbf{t})$ for $\mathbf{x} \in \mathcal{X}$ and all \mathbf{t} almost surely, we have

$$\delta \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E} \left[\frac{1}{\hat{\pi}_{T_i}(\boldsymbol{X}_i)} \{ \boldsymbol{Y}_i - \hat{\boldsymbol{m}}(\boldsymbol{X}_i, \boldsymbol{t}_i) - T_i \boldsymbol{f}(\boldsymbol{X}_i, \boldsymbol{t}_i)/2 \}' \boldsymbol{V}_i^{-1} \right]$$
$$\{ \boldsymbol{Y}_i - \hat{\boldsymbol{m}}(\boldsymbol{X}_i, \boldsymbol{t}_i) - T_i \boldsymbol{f}(\boldsymbol{X}_i, \boldsymbol{t}_i)/2 \}$$

- For randomized study, the proposed method always leads to consistent ITE even main effects is mis-specified
- For observational study, the proposed method double the chances to obtain consistent ITE

 Directly optimize the function among all functional spaces is not feasible → Need assumptions on the function space f ∈ F

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\hat{\pi}_{T_i}(\boldsymbol{X}_i)}\left[\{\boldsymbol{Y}_i-\hat{\boldsymbol{m}}(\boldsymbol{X}_i,\boldsymbol{t}_i)\}-T_i\boldsymbol{f}(\boldsymbol{X}_i,\boldsymbol{t}_i)/2\right]'\boldsymbol{V}_i^{-1}\\\left[\{\boldsymbol{Y}_i-\hat{\boldsymbol{m}}(\boldsymbol{X}_i,\boldsymbol{t}_i)\}-T_i\boldsymbol{f}(\boldsymbol{X}_i,\boldsymbol{t}_i)/2\right]$$

Implementation

• Linear case: $f_{\text{lin}}(\boldsymbol{X}_{i}, t_{j}) = \tilde{\boldsymbol{X}}_{ij}^{\prime} \boldsymbol{\beta}$ where $\boldsymbol{\beta} = (\beta_{0}, \beta_{T}, \beta_{1}, ..., \beta_{p})^{\prime}$ and $\tilde{\boldsymbol{X}}_{ij} = (1, t_{j}, \boldsymbol{X}_{i})^{\prime}$, then the loss function $L_{\text{lin}}(\boldsymbol{\beta})$ is

$$\begin{aligned} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\hat{\pi}_{T_i}(\boldsymbol{X}_i)} \left[\{ \boldsymbol{Y}_i - \hat{\boldsymbol{m}}(\boldsymbol{X}_i, \boldsymbol{t}_i) \} - \{ (T_i \tilde{\boldsymbol{X}}_i/2)' \boldsymbol{\beta} \} \right]' \boldsymbol{V}_i^{-1} \\ \left[\{ \boldsymbol{Y}_i - \hat{\boldsymbol{m}}(\boldsymbol{X}_i, \boldsymbol{t}_i) \} - \{ (T_i \tilde{\boldsymbol{X}}_i/2)' \boldsymbol{\beta} \} \right] \end{aligned}$$
where $\tilde{\boldsymbol{X}}_i = (\tilde{\boldsymbol{X}}_{i1}, ..., \tilde{\boldsymbol{X}}_{ik_i})$

- The minimization can be implemented within linear mixed model or GEE method by specifying the correlation structure *V_i*.
- Non-Linear case: $f_{non}(X_i, t_j) = \beta_0 + \beta_T t_j + \sum_{q=1}^{p} B(X_{i,q})\beta_q$ where B(.) is the B-spline based function in the additive model

- For high-dimensional data:
 - The number of covariates is large.
 - Often we expect only a small subset of the features is associated with the subgroup identification (ie, intervention-moderators).
- We can add Lasso penalty [*Tibshirani et al., 1996*] in our loss function, e.g.

$$\mathcal{L}^*_{\mathsf{lin}}(oldsymbol{eta}) = \mathcal{L}_{\mathsf{lin}}(oldsymbol{eta}) + \lambda ||oldsymbol{eta}||_1$$

where $||\boldsymbol{\beta}||_1 = |\beta_T| + \sum_{i=1}^p |\beta_i|$ and the tuning parameter $\lambda > 0$.

• Different regularization method is also applicable in our framework, but Lasso has better interpretation in application.

Simulation Study

Zhikuan Quan (UCD)

PhD Qualifying Exam in Biostatistics

____June 13, 2023

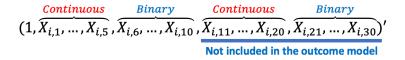
37/51

For longitudinal data $\{(Y_{ij}, T_i, X_i), i = 1, ..., n; j = 1, ..., K\}$ with baseline covariates only and observed time $\{t_j = j : j = 1, ..., K\}$, the continuous response was generated by:

$$Y_{ij} = m(\boldsymbol{X}_i, t_j) + T_i \delta(\boldsymbol{X}_i, t_j)/2 + \alpha_i + \boldsymbol{e}_{ij}$$

with random intercept $\alpha_i \sim N(0, \sigma_{\alpha}^2 = 1)$ and iid $e_{ij} \sim N(0, \sigma_e^2 = 1)$

- Treatment: $T_i \in \{1, -1\}$ by Bernoulli(0.5)
- Estimating δ in the training set with n = 100, K = 5
- Evaluation in the independent testing set with $n_{\rm t}=10000, K=5$
- Number of simulation replications N = 500



• 15 Continuous covariates: $(X_{i,1},...,X_{i,5},X_{i,11},...,X_{i,20}) \sim \mathcal{N}(\mathbf{0}, \Sigma_X)$

$$\mathbf{\Sigma}_{X} = egin{pmatrix} 1 &
ho &
ho^2 & ... &
ho^{14} \
ho & 1 &
ho & ... &
ho^{13} \
ho^2 &
ho & 1 & ... &
ho^{12} \ ... & ... & ... & ... \
ho^{14} &
ho^{13} &
ho^{12} & ... & 1 \end{pmatrix}$$

where $\rho = 0$ for independent case and $\rho = 0.6$ for correlated case. 15 Binany covariates: (Yes a Yes a Yes) as Barpoulli(0.5)

15 Binary covariates: (X_{i,6}, ..., X_{i,10}, X_{i,21}, ..., X_{i,30}) ~ Bernoulli(0.5)

Scenario 1: the validation of the new methods

• The response is generated by

$$Y_{ij} = \beta_0 + \beta_T t_j + \sum_{q=1}^{10} \beta_q X_{i,q}$$
$$+ T_i \left(\gamma_0 + \gamma_T t_j + \sum_{q=1,2,8,10} \gamma_q X_{i,q} \right) / 2$$
$$+ \alpha_i + \epsilon_{ij}$$

Scenario 2: the robustness against mis-specification of main effect

• Other data generation process is the same with scenario 1, except

$$egin{split} Y_{ij} &= eta_0 + eta_{ au} t_j + \sum_{q=1}^{10} eta_q X_{i,q}^2 + \sum_{q=1}^{10} \cos(eta_q X_{i,q}) \ &+ T_i \left(\gamma_0 + \gamma_T t_j + \sum_{q=1,2,8,10} \gamma_q X_{i,q}
ight) / 2 \ &+ lpha_i + \epsilon_{ij} \end{split}$$

Main effect is mis-specified if using linear model

Scenario 3: the robustness against mis-specification of propensity score

• The treatment assignment is generated by the propensity score model:

$$Pr(T_i = 1|X) = \frac{2}{2 + \exp(X_1 + X_6 + X_7)}$$

- Propensity score is mis-specified if assuming randomized intervention with $\hat{\pi}_{T_i}(\mathbf{X}_i) = 0.5$
- Compare the results in both linear and non-linear main effect cases

For all scenarios, the parameters are:

- Interaction effects: $(\gamma_1, \gamma_2, \gamma_8, \gamma_{10}) = (8, -8, 8, -8); \gamma_T = 2, \gamma_0 = 2$
- Small main effect: $\beta_T = 0.1$ and

 $(\beta_0, ..., \beta_{10}) = (0.3, 0.5, 0.4, 0.6, -0.3, -0.6, 0.3, 0.1, -0.2, -0.1, 0.2)$

• Big main effect: $\beta_T = 0.4$ and

 $(\beta_0, ..., \beta_{10}) = (1.2, 2, 1.6, 2.4, -1.2, -2.4, 1.2, 0.4, -0.8, -0.4, 0.8)$

Estimation Methods

- Model 1: Full Mixed Effect Model with Lasso penalty and exchangeable correlation structure.
- Model 2: Huling's Method using square loss with fused lasso in time-varying coefficients.
- Model 3: New Method with Lasso penalty and exchangeable correlation structure.

Estimation Methods

- Model 1: Full Mixed Effect Model with Lasso penalty and exchangeable correlation structure.
- Model 2: Huling's Method using square loss with fused lasso in time-varying coefficients.
- Model 3: New Method with Lasso penalty and exchangeable correlation structure.
- The following statistics are obtained for Model h
 - ITE over time for *i*-th subject:

$$\hat{\boldsymbol{\delta}}_{\boldsymbol{h}}(\boldsymbol{X}_{\boldsymbol{i}},\boldsymbol{t}_{\boldsymbol{i}}) = (\hat{\delta}_{\boldsymbol{h}}(\boldsymbol{X}_{\boldsymbol{i}},t_1),...,\hat{\delta}_{\boldsymbol{h}}(\boldsymbol{X}_{\boldsymbol{i}},t_{\mathcal{K}}))'$$

• Time-average ITE for *i*-th subject: $\bar{\delta}_h(\mathbf{X}_i) = \frac{1}{K} \sum_{j=1}^{K} \hat{\delta}_h(\mathbf{X}_i, t_j)$

Model Evaluation in Independent Testing Data

• Accuracy of subgroup identification for model h:

$$ACC_{h} = \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} I\left\{ \operatorname{sign}\{\bar{\delta}_{h}(\boldsymbol{X}_{i})\} = \operatorname{sign}\{\bar{\delta}_{0}(\boldsymbol{X}_{i})\} \right\}$$

 $\bar{\delta}_0(\mathbf{X}_i) = \frac{1}{K} \sum_{j=1}^{K} \delta(\mathbf{X}_i, t_j)$: true time-average ITE of *i*-th subject.

Model Evaluation in Independent Testing Data

• Accuracy of subgroup identification for model h:

$$ACC_{h} = \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} I\left\{ \operatorname{sign}\{\bar{\delta}_{h}(\boldsymbol{X}_{i})\} = \operatorname{sign}\{\bar{\delta}_{0}(\boldsymbol{X}_{i})\} \right\}$$

 $\bar{\delta}_0(\mathbf{X}_i) = \frac{1}{K} \sum_{j=1}^{K} \delta(\mathbf{X}_i, t_j)$: true time-average ITE of *i*-th subject.

- Spearman's rank correlation coefficient (denoted by SCC_h for model h) between true time-average ITE and estimated time-average ITE.
 - To compare the ability of recovering the rank of time-average ITE.

Model Evaluation in Independent Testing Data

• Accuracy of subgroup identification for model h:

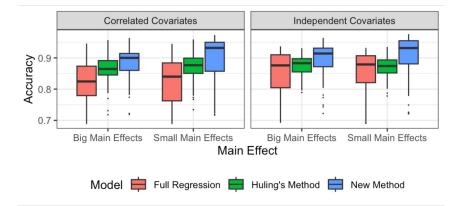
$$ACC_{h} = \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} I\left\{ \operatorname{sign}\{\bar{\delta}_{h}(\boldsymbol{X}_{i})\} = \operatorname{sign}\{\bar{\delta}_{0}(\boldsymbol{X}_{i})\} \right\}$$

 $\bar{\delta}_0(\mathbf{X}_i) = \frac{1}{K} \sum_{j=1}^K \delta(\mathbf{X}_i, t_j)$: true time-average ITE of *i*-th subject.

- Spearman's rank correlation coefficient (denoted by SCC_h for model h) between true time-average ITE and estimated time-average ITE.
 - To compare the ability of recovering the rank of time-average ITE.
- Average prediction error for model h:

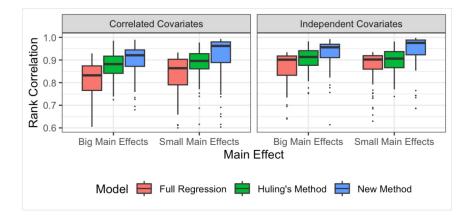
$$APE_h = rac{1}{n_{ ext{t}}}\sum_{i=1}^{n_{ ext{t}}}||\hat{\delta}_h(oldsymbol{X}_i,oldsymbol{t}_i) - \delta_0(oldsymbol{X}_i,oldsymbol{t}_i)||_2$$

where $\delta_0(\mathbf{X}_i, \mathbf{t}_i) = (\delta(\mathbf{X}_i, \mathbf{t}_1), ..., \delta(\mathbf{X}_i, \mathbf{t}_K))'$ and $||.||_2$ is L_2 norm.



• New method can identify subgroups more precisely.

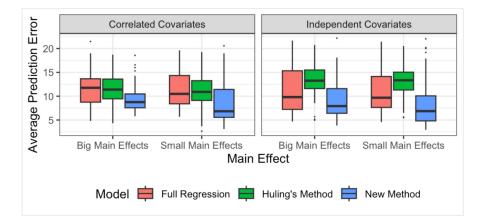
Zhikuan Quan (UCD)



 New method can recover the rank of individualized treatment effects better.

	4	·····································	5000
Zhikuan Quan (UCD)	PhD Qualifying Exam in Biostatistics	June 13, 2023	50/51

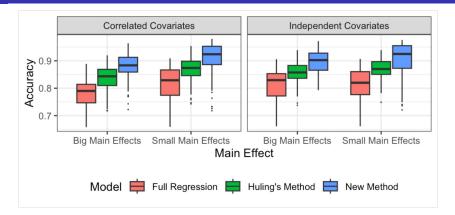
Scenario 1: Estimation Performance



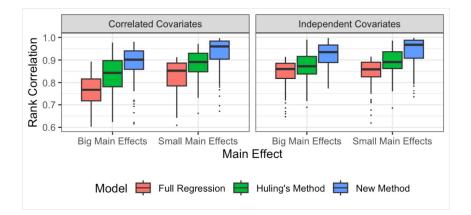
New method can predict individualized treatment effects more precisely.

Zhikuan Quan (UCD) PhD Qualifying Exam in Biostatistics June 13, 2023 51/ 51

Scenario 2: Double Robustness to Mis-specification of Main Effect

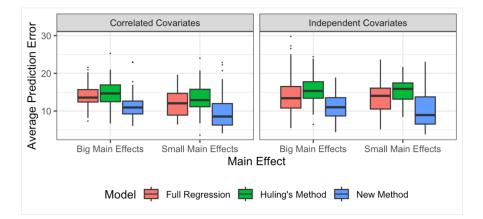


- Full regression model requires correctly specified main effects, leading to worse performance due to mis-specified main effects
- New method can identify subgroups precisely even if the main effect is mis-specified.



 The ability of recovering the rank is consistent with the accuracy of subgroup identification.

Scenario 2: Double Robustness to Mis-specification of Main Effect

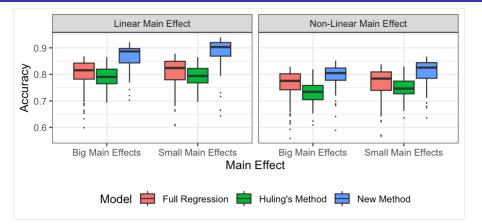


• New method can predict individualized treatment effects precisely even if the main effect is mis-specified.

Zhikuan Quan (UCD)

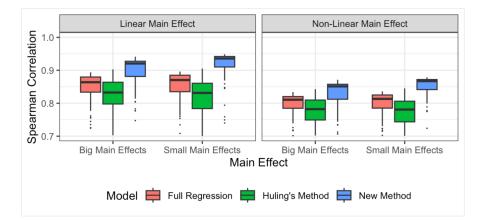
June 13, 2023

Scenario 3: Double Robustness to Mis-specification of Propensity Score



- Huling's method requires correct propensity score model, leading to worse performance.
- New method can identify subgroups precisely if only the propensity score is mis-specified.

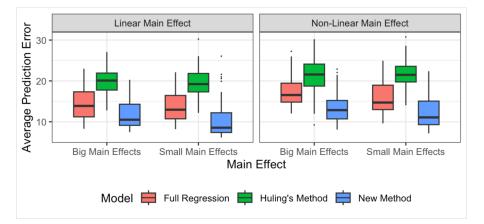
Zhikuan Quan (UCD)



• The ability of recovering the rank is consistent with the accuracy of ITR.

 Zhikuan Quan (UCD)
 PhD Qualifying Exam in Biostatistics
 June 13, 2023
 56/ 51

Scenario 3: Double Robustness to Mis-specification of Propensity Score



 New method can predict individualized treatment effects precisely if only the propensity score is mis-specified.

Additional Simulation Results

Simulations for clustered data showed similar findings for the three scenarios.

For non-linear ITE:

$$\begin{aligned} Y_{ij} &= \beta_0 + \beta_T t_j + \sum_{q=1}^{10} \beta_q X_{i,q} \\ &+ T_i \left(\gamma_0 + \gamma_T t_j + \sum_{q=1,2,8,10} \gamma_q X_{i,q} + 2X_{i,8}^2 - 4X_{i,10}^3 \right) / 2 \\ &+ \alpha_i + \epsilon_{ij} \end{aligned}$$

Simulations show that the proposed method with B-spline based additive model performs better.

Real Data Analysis: MIA Study

Zhikuan Quan (UCD)

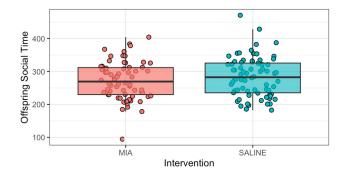
PhD Qualifying Exam in Biostatistics

June 13, 2023

59/51

- This is a randomized study in rat by the UC Davis Conte Center for studying effects of maternal immune activation on brain, behavior, and other development in offspring.
- Binary interventions at each mother
 - MIA: inject 50 LPS in dam to induce MIA
 - Saline: Control group
- Sample size: 138 offspring from 21 dams (9 MIA vs. 12 Saline)
- Outcome: offspring social investigation time
- Covariates: 13 cytokines for each mother before intervention.

MIA Study



- Average intervention effect for entire population is not significant.
- How about individualized MIA effect?
 - potential MIA-resilient group and MIA-susceptible group?

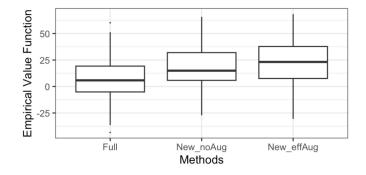
- Model Comparison by 100 random splits for 50% training set and 50% testing set at dam-level:
 - Method 1: Traditional full linear mixed model
 - Method 2: New method without main effect estimation
 - Method 3: New method with efficiency augmentation
- All methods use Lasso penalty to select variables (tuning parameter chosen by least MSE).

- Model Comparison by 100 random splits for 50% training set and 50% testing set at dam-level:
 - Method 1: Traditional full linear mixed model
 - Method 2: New method without main effect estimation
 - Method 3: New method with efficiency augmentation
- All methods use Lasso penalty to select variables (tuning parameter chosen by least MSE).
- Model can be evaluated by Empirical Value Function under :

$$\mathsf{EVF} := E[Y_{ij}|\hat{D}(\boldsymbol{X_i}) = T_i] - E[Y_{ij}|\hat{D}(\boldsymbol{X_i}) \neq T_i]$$

where $\hat{D}(\mathbf{X}_i) := \operatorname{sign}(\hat{\delta}(\mathbf{X}_i))$. The higher the EVF, the better the model to differentiate the subgroups.

MIA Study



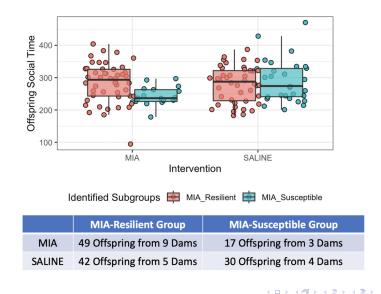
• New method with efficiency augmentation yields the largest value, which means subgroups can be differentiate better based on the ITE estimated by our method.

June 13, 2023

- Apply the proposed new method with augmentation, which selected 4 biomarkers for predicting individualized MIA effects.
- Mothers with high level baseline (pre-intervention) of GM-CSF and IL-1 α , low level of IFN- γ and IL-5, are more susceptible to the effect of maternal immune activation. (ie, MIA lowers social time compared to control among their offspring)

Variable	GM-CSF	IFN-γ	IL-1α	IL-5
Coefficients	-0.45	0.29	-1.65	0.63

MIA Study



June 13, 2023

- New method can identify subgroups and predict individualized treatment effects more precisely than existing methods.
- New method shows doubly robust property with respect to main effect and propensity score mis-specification.
 - For randomized study, the proposed method always leads to consistent ITE even main effects is mis-specified
 - For observational study, the proposed method double the chances to obtain consistent ITE
- Allow regularization approach to handle high-dimensional data
- Allow flexible modeling of ITE using flexible function space or machine learning techniques

- Extension to multiple treatments case
 - e.g. incorporated with the angle-based method [Qi et al., 2020]
- Extension to different types of outcome
 - e.g. binary outcome(with different loss function)
- Extension to involving post-MIA characteristics in identifying subgroups
 - e.g. following the idea of [Barbosa et al., 2020]
- Application with flexible function space to predict complicated ITE
 - e.g. more machine learning techniques (random forest, etc.) and semi-parametric method as in *[Liang et al., 2022]*
- Application to more MIA datasets and other real data examples

- Bankole A Johnson, Chamindi Seneviratne, Xin-Qun Wang, Nassima Ait-Daoud, and Ming D Li. Determination of genotype combinations that can predict the outcome of the treatment of alcohol dependence using the 5-ht3 antagonist ondansetron. *American Journal of Psychiatry*, 170(9):1020–1031, 2013.
- [2] Laura H Goetz and Nicholas J Schork. Personalized medicine: motivation, challenges, and progress. *Fertility and sterility*, 109(6):952–963, 2018.
- [3] Noura S Abul-Husn and Eimear E Kenny. Personalized medicine and the power of electronic health records. Cell, 177(1):58–69, 2019.
- [4] Min Qian and Susan A Murphy. Performance guarantees for individualized treatment rules. Annals of statistics, 39(2):1180, 2011.
- [5] Susan A Murphy. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(2):331–355, 2003.
- [6] Yingqi Zhao, Donglin Zeng, A John Rush, and Michael R Kosorok. Estimating individualized treatment rules using outcome weighted learning. *Journal of the American Statistical Association*, 107(499):1106–1118, 2012.
- [7] Tianxi Cai, Lihui Tian, Hajime Uno, Scott D Solomon, and LJ Wei. Calibrating parametric subject-specific risk estimation. *Biometrika*, 97(2):389–404, 2010.
- [8] James Edward Signorovitch. Identifying informative biological markers in high-dimensional genomic data and clinical trials. PhD thesis, Harvard University, 2007.
- [9] Lu Tian, Ash A Alizadeh, Andrew J Gentles, and Robert Tibshirani. A simple method for estimating interactions between a treatment and a large number of covariates. *Journal of the American Statistical Association*, 109(508):1517–1532, 2014.

Zhikuan Quan (UCD)

PhD Qualifying Exam in Biostatistics

- [10] Xin Zhou, Nicole Mayer-Hamblett, Umer Khan, and Michael R Kosorok. Residual weighted learning for estimating individualized treatment rules. *Journal of the American Statistical Association*, 112(517):169–187, 2017.
- [11] Shuai Chen, Lu Tian, Tianxi Cai, and Menggang Yu. A general statistical framework for subgroup identification and comparative treatment scoring. *Biometrics*, 73(4):1199–1209, 2017.
- [12] Marjolein Fokkema, Niels Smits, Achim Zeileis, Torsten Hothorn, and Henk Kelderman. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees. *Behavior research methods*, 50:2016–2034, 2018.
- [13] Yishu Wei, Lei Liu, Xiaogang Su, Lihui Zhao, and Hongmei Jiang. Precision medicine: Subgroup identification in longitudinal trajectories. *Statistical methods in medical research*, 29(9):2603-2616, 2020.
- [14] Wei-Yin Loh, Luxi Cao, and Peigen Zhou. Subgroup identification for precision medicine: A comparative review of 13 methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(5):e1326, 2019.
- [15] Hyunkeun Cho, Peng Wang, and Annie Qu. Personalize treatment for longitudinal data using unspecified random-effects model. *Statistica Sinica*, pages 187–206, 2017.
- [16] Nichole Andrews and Hyunkeun Cho. Validating effectiveness of subgroup identification for longitudinal data. Statistics in medicine, 37(1):98–106, 2018.
- [17] Juan Shen and Annie Qu. Subgroup analysis based on structured mixed-effects models for longitudinal data. Journal of Biopharmaceutical Statistics, 30(4):607–622, 2020.
- [18] Francisco J Diaz. Measuring the individual benefit of a medical or behavioral treatment using generalized linear mixed-effects models. *Statistics in medicine*, 35(23):4077–4092, 2016.

イロト イポト イヨト イヨト

- [19] Mu Yue and Lei Huang. A new approach of subgroup identification for high-dimensional longitudinal data. Journal of Statistical Computation and Simulation, 90(11):2098–2116, 2020.
- [20] Roza M Vlasova, Ana-Maria Iosif, Amy M Ryan, Lucy H Funk, Takeshi Murai, Shuai Chen, Tyler A Lesh, Douglas J Rowland, Jeffrey Bennett, Casey E Hogrefe, et al. Maternal immune activation during pregnancy alters postnatal brain growth and cognitive development in nonhuman primate offspring. Journal of Neuroscience, 41(48):9971–9987, 2021.
- [21] Urs Meyer. Neurodevelopmental resilience and susceptibility to maternal immune activation. Trends in neurosciences, 42(11):793–806, 2019.
- [22] Tianxi Cai, Lu Tian, Peggy H Wong, and LJ Wei. Analysis of randomized comparative clinical trial data for personalized treatment selections. *Biostatistics*, 12(2):270–282, 2011.
- [23] Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5):688, 1974.
- [24] Haomiao Meng and Xingye Qiao. Augmented direct learning for conditional average treatment effect estimation with double robustness. *Electronic Journal of Statistics*, 16(1):3523–3560, 2022.
- [25] Michael Unser, Akram Aldroubi, and Murray Eden. B-spline signal processing. i. theory. IEEE transactions on signal processing, 41(2):821–833, 1993.
- [26] Baqun Zhang, Anastasios A Tsiatis, Eric B Laber, and Marie Davidian. A robust method for estimating optimal treatment regimes. *Biometrics*, 68(4):1010–1018, 2012.
- [27] Chengchun Shi, Rui Song, and Wenbin Lu. Robust learning for optimal treatment decision with np-dimensionality. *Electronic journal of statistics*, 10:2894, 2016.
- [28] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

イロト イポト イヨト イヨト

- [29] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. 2012.
- [30] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476):1418–1429, 2006.
- [31] Chong Zhang and Yufeng Liu. Multicategory angle-based large-margin classification. Biometrika, 101(3):625–640, 2014.
- [32] Chong Zhang, Jingxiang Chen, Haoda Fu, Xuanyao He, Ying-Qi Zhao, and Yufeng Liu. Multicategory outcome weighted margin-based learning for estimating individualized treatment rules. *Statistica sinica*, 30:1857, 2020.
- [33] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients when some regressors are not always observed. *Journal of the American statistical Association*, 89(427):846–866, 1994.
- [34] Jared D Huling, Menggang Yu, and Maureen Smith. Fused comparative intervention scoring for heterogeneity of longitudinal intervention effects. 2019.
- [35] David Ruppert, Matt P Wand, and Raymond J Carroll. Semiparametric regression. Number 12. Cambridge university press, 2003.

イロト イポト イヨト イヨト

Thank You

Zhikuan Quan (UCD)

Appendix: Continuous Outcome Model for Clustered Data

We can decompose the continuous outcome into:

$$m{Y}_i = m{m}(m{X}_i) + T_i \delta(m{X}_i)/2 + m{\epsilon}_i$$

• Main Effect is characterized by

$$\boldsymbol{m}(\boldsymbol{X}_{i}) = \{\mathbb{E}(\boldsymbol{Y}_{i} | T_{i} = 1, \boldsymbol{X}_{i}) + \mathbb{E}(\boldsymbol{Y}_{i} | T_{i} = -1, \boldsymbol{X}_{i})\}/2$$

where $\boldsymbol{m}(\boldsymbol{X_i}) = (\boldsymbol{m}(\boldsymbol{X_i}), ..., \boldsymbol{m}(\boldsymbol{X_i}))'$

• The individualized treatment effect (ITE) is represented by:

$$\delta(oldsymbol{X}_{oldsymbol{i}}) := \mathbb{E}\left[(oldsymbol{Y}_{oldsymbol{i}}^{(1)} - oldsymbol{Y}_{oldsymbol{i}}^{(-1)})|oldsymbol{X}_{oldsymbol{i}}
ight]$$

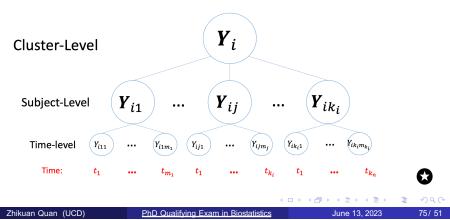
where $\delta(\mathbf{X}_i) = (\delta(\mathbf{X}_i), ..., \delta(\mathbf{X}_i))'$

• Random Error $\epsilon_i = (\epsilon_{i1}, ..., \epsilon_{ik_i})'$ with $\mathbb{E}(\epsilon_i) = \mathbf{0}_{k_i}$ and invertible $Var(\epsilon_i) = V_i$

Appendix: Multi-leveled Data

Data: $\{(\mathbf{Y}_i, T_i, \mathbf{X}_i) : i = 1, ..., n; j = 1, ..., k_i; k = 1, ..., m_j\}$

- Outcome: $\mathbf{Y}_i = (\mathbf{Y}_{i1}, ..., \mathbf{Y}_{ik_i})'$ for *i*-th cluster
- $\mathbf{Y}_{ij} = (Y_{ij1}, ..., Y_{ijm_j})'$ for *j*-th subject in *i*-th cluster
- **Y**_{ij}(t_k) := Y_{ijk} is the k-th observation for j-th subject in i-th cluster at time t_k



Appendix: Model 1 in Simulation Study

 Model 1: Full Mixed Effect Model with Lasso penalty and exchangeable correlation structure:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\hat{\pi}_{T_i}(\mathbf{X}_i)} \left[\mathbf{Y}_i - \{ \tilde{\mathbf{X}}_i' \boldsymbol{\beta} + (T_i \tilde{\mathbf{X}}_i/2)' \boldsymbol{\gamma} \} \right]' \mathbf{V}_i^{-1} \\ \left[\mathbf{Y}_i - \{ \tilde{\mathbf{X}}_i' \boldsymbol{\beta} + (T_i \tilde{\mathbf{X}}_i/2)' \boldsymbol{\gamma} \} \right] \\ + \lambda \left(\sum_{q=1}^{p} |\beta_q| + \sum_{q=1}^{p} |\gamma_q| + |\beta_T| + |\gamma_T| \right)$$

where $\tilde{\boldsymbol{X}}_{i} = (\tilde{\boldsymbol{X}}_{i1}, ..., \tilde{\boldsymbol{X}}_{iK}), \tilde{\boldsymbol{X}}_{ij} = (1, t_j, \boldsymbol{X}_i)'$ and $\boldsymbol{\beta} = (\beta_0, \beta_T, \beta_1, ..., \beta_p)', \boldsymbol{\gamma} = (\gamma_0, \gamma_T, \gamma_1, ..., \gamma_p)'$

- $\hat{\pi}_{T_i}(X_i) = 0.5$ in randomized trial
- ITE over time: $\hat{\delta}_1(\pmb{X_i},\pmb{t_i}) = (ilde{\pmb{X}_{i1}}\hat{\gamma},..., ilde{\pmb{X}_{iK}}\hat{\gamma})'$
- Average ITE for *i*-th subject: $\bar{\delta_1}(X_i) = \frac{1}{K} \sum_{j=1}^K \tilde{X}_{ij} \hat{\gamma}$

Appendix: Model 2 in Simulation Study

• Model 2: Huling's Method using square loss with fused lasso in time-varying coefficients [Huling et al., 2019]:

$$(\hat{\gamma}_{(1)},...,\hat{\gamma}_{(K)}) := \operatorname*{argmin}_{(\gamma_{(1)},...,\gamma_{(K)})} \frac{1}{K} \sum_{t=1}^{K} \frac{1}{n} \sum_{i=1}^{n} \frac{(Y_{it} - T_i \tilde{X}_i \gamma_{(t)}/2)^2}{\hat{\pi}_{T_i}(X_i)} + \lambda_1 \sum_{q=1}^{p} \sum_{t=2}^{K} |\gamma_{t,q} - \gamma_{t-1,q}| + \lambda_2 \sum_{q=1}^{p} \sum_{t=1}^{K} |\gamma_{t,q}|$$

•
$$\tilde{\boldsymbol{X}}_{i} = (1, \boldsymbol{X}'_{i})'$$
 and $\boldsymbol{\gamma}_{(t)} = (\gamma_{(t),0}, \gamma_{(t),1}, ..., \gamma_{(t),p})$

- ITE over time: $\hat{\delta}_2(X_i, t_i) = (\tilde{X}_i \hat{\gamma}_{(1)}, ..., \tilde{X}_i \hat{\gamma}_{(K)})'$
- Average ITE for *i*-th subject: $\bar{\delta_2}(\mathbf{X}_i) = \frac{1}{K} \sum_{t=1}^{K} \tilde{\mathbf{X}}_i \hat{\gamma}_{(t)}$

Appendix: Model 3 in Simulation Study

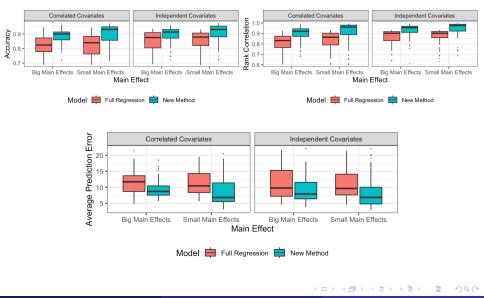
• Model 3: New Method with Lasso penalty and exchangeable correlation structure:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\hat{\pi}_{T_i}(\boldsymbol{X}_i)} \left[\{ \boldsymbol{Y}_i - \hat{\boldsymbol{m}}(\boldsymbol{X}_i, \boldsymbol{t}_i) \} - \{ (T_i \tilde{\boldsymbol{X}}_i/2)' \boldsymbol{\gamma} \} \right]' \boldsymbol{V}_i^{-1} \\ \left[\{ \boldsymbol{Y}_i - \hat{\boldsymbol{m}}(\boldsymbol{X}_i, \boldsymbol{t}_i) \} - \{ (T_i \tilde{\boldsymbol{X}}_i/2)' \boldsymbol{\gamma} \} \right] \\ + \lambda \left(\sum_{q=1}^{p} |\gamma_q| + |\gamma_T| \right)$$

where $\tilde{\boldsymbol{X}}_{i} = (\tilde{\boldsymbol{X}}_{i1}, ..., \tilde{\boldsymbol{X}}_{iK}), \ \tilde{\boldsymbol{X}}_{ij} = (1, t_j, \boldsymbol{X}_i)', \ \boldsymbol{\gamma} = (\gamma_0, \gamma_T, \gamma_1, ..., \gamma_p)'$

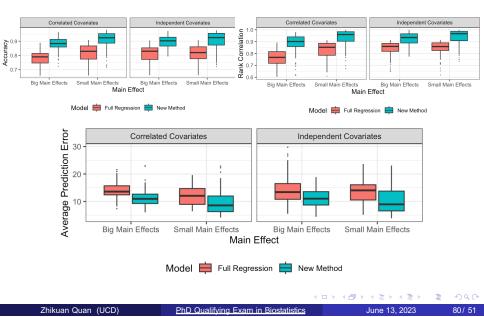
- $\hat{\pi}_{T_i}(X_i) = 0.5$ in randomized trial
- *m̂*(*X_i*, *t_i*) is estimated by linear mixed model with all covariates and time for efficiency augmentation.
- ITE over time: $\hat{\delta}_3(\pmb{X}_i,\pmb{t}_i)=(\tilde{\pmb{X}}_{i1}\hat{\gamma},...,\tilde{\pmb{X}}_{iar{\kappa}}\hat{\gamma})'$
- Average ITE for *i*-th subject: $\bar{\delta_3}(X_i) = \frac{1}{K} \sum_{j=1}^K \tilde{X}_{ij} \hat{\gamma}$

Appendix: Result of Clustered Data: S1

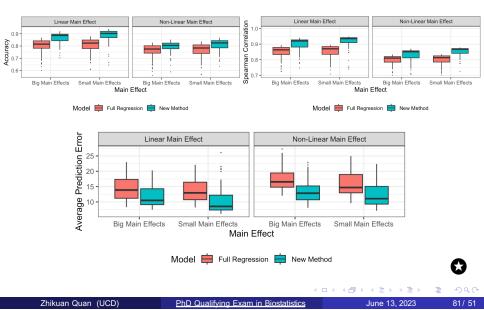


June 13, 2023

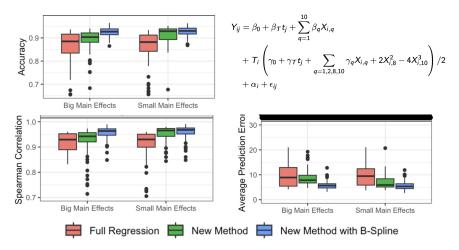
Appendix: Result of Clustered Data: S2



Appendix: Result of Clustered Data: S3



Appendix: Simulation of Non-Linear case



• Non-Linear case: $f_{non}(X_i, t_j) = \beta_0 + \beta_T t_j + \sum_{q=1}^p B(X_{i,q})\beta_q$ where B(.) is the B-spline based function in the additive model